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Demystifying Hogenauer filters
SPG technical staff

Introduction:

In 1981 Eugene B. Hogenauer published a paper on the CIC filter ( CIC stands for
Cascaded Integrator Comb). He claimed this was an economical class of digital filter.
Since then these filters have found extensive use in decimation and interpolation in
multirate systems such as Sigma – Delta Analog to Digital converters. This paper is
an attempt to investigate these types of filters and provide helpful feedback to practicing
engineers like ourselves.

CIC Filter structure:

The CIC filter is a cascade of an integrator [HI(z) = 1/(1-z-1 )] and a comb filter
[ HC(z)=(1-z-RM)] referenced to the high sampling rate. The comb section operates at a
lower sampling rate ( fS/R) than the integrator section. fS = input high sampling rate. R =
sampling rate reduction factor. M is a differential delay typically one or two.  This is
shown below. Note both filters are one pole filters.

A few notes are in order at this stage in keeping with the elaboration of the filters
operation
.
First where do the z – transform based system functions come from?

The digital integrator has a time based equation of:
y(n) = x(n) + y(n-1) Eqn (1).
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Figure 1.0 A CIC filter with single integrator and
comb section.
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Or, [the output sample at the nth clock is the sum of the input sample and previous output
sample.]

y(n) – y(n-1) = x(n) Eqn (2).

Or,

Taking z transforms on both sides  (where the definition of the z transform is:
X(z) =Σ x(n)z-k . Where the summation is  k = -∞ to ∞. ) The variable z is complex.

Thus if the z transform is taken on both sides of Eqn (2) we get:

Y(z) – Y(z)z-1  = X(z) Eqn (3).

Note the signal y(n-1) simply means that the signal is a digital sample delayed by one
clock and so on. The z transform of delayed signals have a negative integer exponent on
the z variable as shown above.

Thus it is obvious that the transfer function is:

HI(z) = Y(z)/X(z) = 1/(1-z-1) Eqn (4).

Similarly the time based equation for the comb is:

y(n) = x(n) – x(n-M) Eqn (5)

Which leads to:

Y(z) = X(z) – X(z)z-M Eqn (6)

Or,

HC(z) = Y(z)/X(z) = 1- z-M Eqn (7)

Generally single sections of the CIC filter do not have good attenuation properties so a
cascade of single sections are used with a down sampler between the integrator cascade
and the comb cascade as shown below:
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Figure 2: 3 section cascade
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This concept can be generalized to N sections. Then the system transfer function
becomes:

H(z) = HI(z).HC(z) = [(1-z-RM)/(1-z-1)]N Eqn (8)

This is referenced to the high sampling rate.

However, if the single section comb filter transfer function is expanded by polynomial
division ( i.e divide 1 – z-RM  by 1 – z-1 ) the result will be:
Σ z-k. The summation is over k from 0 to RM-1.

[Σ z-k ]N  for N sections. Eqn(8.1)

This summation is the same as the system function for a FIR filter. Therefore a N section
CIC filter is functionally equivalent to a cascade of N FIR filters!

A way to do this is use a N cascade of RM storage registers ( FF’s) and one accumulator
per section.

______________________________________________________________________

The advantages and disadvantages stated by Hogenauer in his original paper for these
filters are repeated below:

Advantages and disadvantages:

Advantages:
“
1.0 No multipliers are required.
2.0 No storage is required.
3.0 Intermediate storage is reduced by integrating at a high sampling rate and comb

filtering at a low sampling rate compared to the equivalent implementation using
cascaded uniform FIR filters.

4.0 The structure of the CIC filter is very “regular” consisting of two basic building
blocks.

5.0 Little external control or complicated local timing is required.
6.0 The same filter design can easily be used for a wide range of rate change factors,

R, with the addition of a scaling circuit and minimal changes to the filter timing.
“
Disadvantages:
“
1.0 Register widths can become large for large rate change factors.
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2.0 The frequency response is fully determined by  only three integer factors ( R, M
and N), resulting in a limited range of filter characteristics.

Typical usage of CIC filters is in “ areas where high sampling rates make multipliers an
uneconomical choice and areas where large rate change factors would require large
amounts of coefficient storage or fast impulse response generation.”

Frequency response:

CIC filters are essentially low pass filters. Their frequency and power response can be
derived as follows:

Evaluate the transfer function H(z) at:

z = e j(2πf/R)
Eqn 9.0

Thus:

H(f) = 1 – e –(j2πf/R)RM
Eqn 10.0

1 – e –(j2πf/R)

1 – e –(j2πfM)
Eqn 11.0

1 – e –(j2πf/R)

Let us now use the numerator to first simplify the above equation in a series of steps
shown below:

1 – e –(j2πfM)
  = e –(j2πfM)/2 e (j2πfM)/2 – e –(j2πfM)                   Eqn 12.0

    = e –(j2πfM)/2 ( e (j2πfM)/2 – e –(j2πfM)/ e –(j2πfM)/2) )

Eqn 13.0

      = e –(j2πfM)/2 ( e (j2πfM)/2 – e –(j2πfM)/2 ) Eqn 14.0

      = e –(j2πfM)/2 ( Cos πfM + jSin πfM – Cos πfM + jSin πfM) Eqn 15.0
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= e –(j2πfM)/2 ( 2jSin πfM ) Eqn 16.0

Similarly we get for the denominator:

= e –(j2πf/R)/2 ( 2jSin πf/R ) Eqn 17.0

Combining the two we get;

H(f) = Sin πfM
e –(jπf/R(RM-1)

Sin πf/R

Eqn 18.0

Again using Euler’s identity:

=  S ( Cos πf/R(RM-1) – j Sin πf/R(RM-1))
= SCos πf/R(RM-1) – j SSin πf/R(RM-1)) Eqn 19.0

Where S = Sin πfM/ Sin πf/R

The amplitude of this response is:

= {[( S2Cos2 πf/R(RM-1) +S2Sin 2πf/R(RM-1))]1/2 }N

= S N

| H(f) | =  [Sin πfM/ Sin πf/R]N Eqn 20.0

The power response is: ( Square the term)

|P(f)| =  [Sin πfM/ Sin πf/R]2N                                                                     Eqn 21.0

For large R the term, Sin πf/R = πf/R (over a limited frequency range) so:

|P(f)| =  [RM(Sin πfM/ πfM)]2N Eqn 22.0

This is an approximation that can be used for many practical designs and has an error less
than 1 dB for RM ≥ 10, 7 ≥ N ≥ 1 and 255/256M ≥ f ≥ 0.

N
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As can be seen the function Sin πfM/ πfM is a Sinc function. i.e  a  Sinx/x function. The
graph of this function is shown below:

The function is defined for all values of x except 0; but we also know that as x gets
smaller and smaller, the ratio sin x./x—provided x is measured in radians—
tends to 1. We can simply define the value of sin0/0 to be 1,
and this definition will assure the continuity of the function near x = 0.

It is symmetric about the y-axis; that is, f(−x) = f(x) for all values of x (in the language of
algebra, f (x.) is an even function.) the graph of sin x./x represents damped oscillations
whose amplitude steadily decreases as x increases.

As can be seen from the above graph, the nulls of the function exist at multiples of π.

Therefore using the argument of the power response above, the nulls of the response exist
at multiples of f=1/M.  We can use M as a design parameter to control where
the nulls of the power response will occur.

The figures below represent the frequency response of a Hogenauer filter.
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Figure 3.0 Frequency response of a Hogenauer filter

The arrows indicate the folding or aliasing of the areas around the sampling frequency
multiples that are B wide. In the figure above the worst case folding occurs for the first
multiple of the sampling frequency and is 16 dB below the maximum ( 0dB) response at
fs=0.

In practical design problems, the aliasing errors can be characterized by the maximum
error over all aliasing bands. If fc=B/2 ≤ 1/(2M) then this maximum error occurs at the
lower edge of the first aliasing band at

fA1 = 1 – fc Eqn 23.0

Hogenauer presented tables, reproduced below which assist in determining the tradeoffs
between bandwidths, passband attenuation and aliasing error. It is assumed that R, the
rate change factor is large so the approximation in equation 22 can be applied.

In the tables presented the attenuations are relative to maximum filter response at f = 0.
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This figure was reproduced by permission from Richard Lyons.
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Table 1.0

1/128 0.0 0.0 0.0 0.0 0.0 0.01

1/64 0.0 0.01 0.01 0.01 0.02 0.02

1/32 0.01 0.03 0.04 0.06 0.07 0.08

1/16 0.06 0.11 0.17 0.22 0.28 0.34

1/8 0.22 0.45 0.67 0.90 1.12 1.35

1/4 0.91 1.82 2.74 3.65 4.56 5.47

Relative
bandwidth –
differential delta
product ( Mfc)

Passband attenuation at fc ( dB) as a function of number of
stages (N). *

1 2 3 4 5 6
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Figure 4.0. Expanded view of frequency response in the vicinity of fc

The passband in
Hogenauer
filters is not flat,
but drooping.
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The other factor that comes into play for these filters is M, the differential delay. In a
practical sense factors of M greater 2 seem to be of less value.

Table 2.0

Conclusions and discussions:

The Hogenauer or CIC filter is a convenient filter for decimation or interpolation of
digital signals, for example, in oversampled (OSR) A/Ds ( sigma delta A/D). The shape
of the response is such that a post filter is usually used to compensate for the droop in the
passband response. The tables given above can be used in the design of these filters. A
companion paper to this paper focuses on the design of decimation filters as part of a
series on OSR A/D converters.

1 1/128 42.1 84.2 126.2 168.3 210.4 252.5

1 1/64 36.0 72.0 108.0 144.0 180.0 215.9

1 1/32 29.8 59.7 89.5 119.4 149.2 179.0

1 1/16 23.6 47.2 70.7 94.3 117.9 141.5

1 1/8 17.1 34.3 51.4 68.5 85.6 102.8

1 1/4 10.5 20.9 31.4 41.8 52.3 62.7

2 1/256 48.1 96.3 144.4 192.5 240.7 288.8

2 1/128 42.1 84.2 126.2 168.3 210.4 252.5

2 1/64 36.0 72.0 108.0 144.0 180.0 216.0

2 1/32 29.9 59.8 89.6 119.5 149.4 179.3

2 1/16 23.7 47.5 71.2 95.0 118.7 142.5

2 1/8 17.8 35.6 53.4 71.3 89.1 106.9

M fc Aliasing attenuation at fA1 (dB) as a function of the number of stages N.

1 2 3 4 5 6


