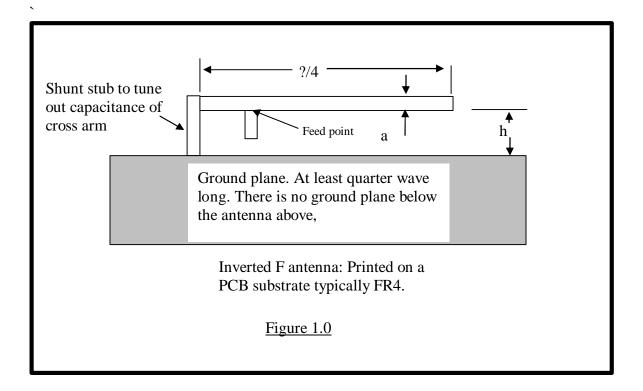
Analysis of a small Inverted F PCB antenna for a 450 Mhz to 470 Mhz frequency band radio receiver using NEC2

<u>1.0</u> Introduction:

A small antenna was required to be implemented on the PCB of a FM radio receiver operating between 450 Mhz and 470 Mhz. The PCB size was required to be no more than 4 inches long and 2 inches wide.

An inverted F antenna was chosen for this purpose. This antenna is printed directly on the PCB. The issues in the design of this antenna are numerous. Not the least being that not much information is available for the design of this type of antenna from an *analytical* point of view.

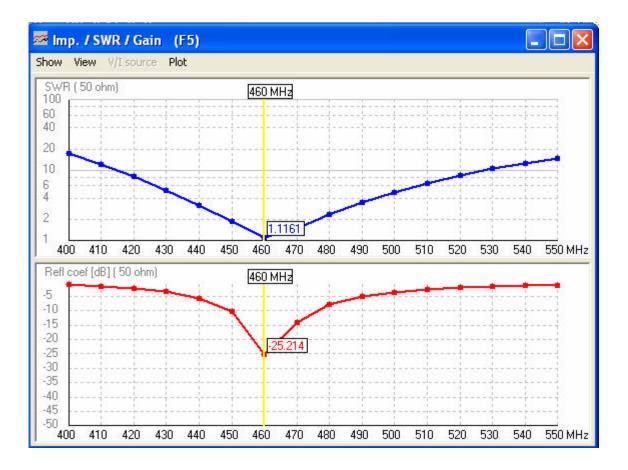

In any case even if the antenna is designed very carefully, and EM simulations are used extensively, ultimately the tuning of the antenna has to be done within the enclosure, as the performance is quite sensitive to other components on the board, the enclosure and the ground plane.

In any case, it must be emphasized that the antenna will still have to be tuned in its final enclosure along with other components.

2.0 The inverted F antenna configuration:

The configuration of the IFA is shown below in Figure 1.0. It is printed on a PCB using standard PCB techniques. The cross arm is a quarter wavelength (corrected for the composite dielectric constant of the PCB material and air, as detailed below.)

The vertical arm is a stub tuning device to tune out the capacitance of the cross arm at the frequency of interest. Expressions for the capacitance are given below. In addition the Agilent CAD package – APPCAD is also used to confirm calculations as needed.

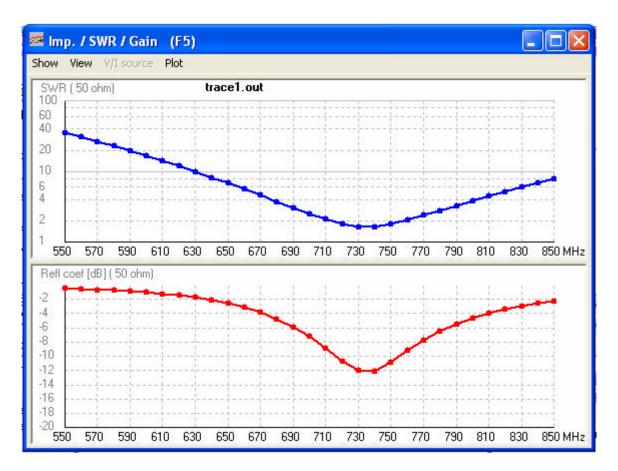


Simulation results of an inverted F antenna using NEC2

Frequency = 460 Mhz, Length of wire = 0.16 (cross arm) meter, radius = 1mm free space wavelength = 0.652 meter. Parallel stub = 0.16 meter Radius = 0.1mm, real ground. Feed point is 0.055 m from shorted end.

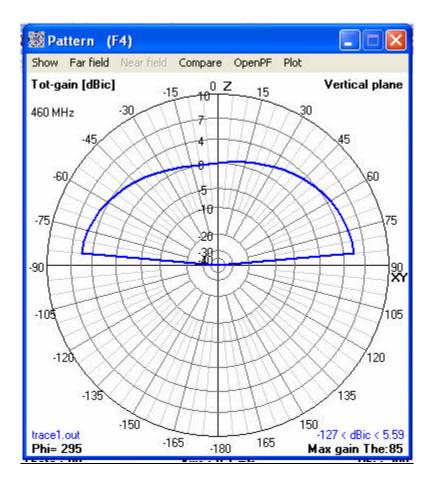
👔 Main [V5.8.1]	(F2)				
File Edit Settings	Calculate Window Sho	ow Run	Help		
💳 🕼 🦞 🕲 31	6 🛞 🛞 🖄 🛞	1:1	L 🗘		
Filename trace1	.out		Frequency Wavelength	460 0.652	Mhz mtr
Voltage	6.99 + j 0 V		Current 🛛	0.14 + j 0.02 A	ci.
Impedance Parallel form	48.3 - j 5.14 48.9 // - j 460		Series comp. Parallel comp.	2.e-3 0.159	uH uH
S.W.R. 50 Efficiency Radiat-eff.	1.12 100		Input power Structure loss Network loss	1 0 0	¥
Environment			Radiat-power	1	W
FREE SPACE					
Comment					
*.Out loading-time=0.	078				
Seg's/patches	13	_		count step	
Freq/Eval steps	1168 16	-	Theta -180 180 Phi 185 185	73 5	
Calculation time	0.109	s			

SWR and reflection coefficient

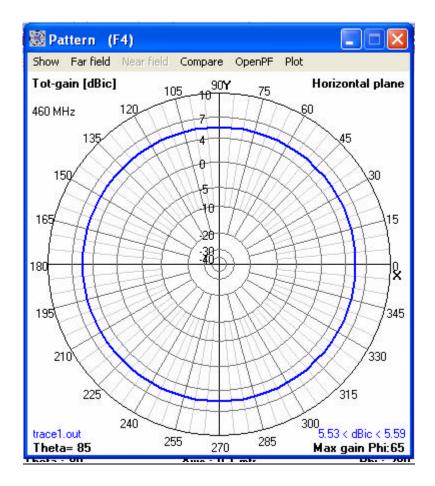


Antenna over a copper ground plane No other changes from above

👔 Main [V5.	.8.1] (F2)				
File Edit Set	tings Calculate Window Show:	Run	Help		
	8 30 🛃 🏵 🖄 🥮 📓	😵 f .:	0		
Filename	trace1.out		Frequency Wavelength	460 0.652	Mhz mtr
Voltage	65.5+j0V		Current	0.02 + j 0.11 A	
Impedance Parallel form	75.6 - j 565 4289 // - j 575	_	Series comp. Parallel comp.	0.195 0.199	uH uH
s.w.r. 50	86.4	%	Input power Structure loss	1	
Efficiency Radiat-eff.	100	~ %	Network loss	0	Ŵ
Environment			Radiat-power	1	W
WHERE WIRE FINITE GROU	NE SPECIFIED. E ENDS TOUCH GROUND, CURRE ND. SOMMERFELD SOLUTION	INT WIL	L BE INTERPOLATE	D TO IMAGE IN GROUND PL	ANE.
Comment					
(*.Out loading-ti	me=U.U94				
Seg's/patches	13		start stop	count step	
Pattern lines	1147		Theta _90 90	37 5	
Freq/Eval steps Calculation time			Phi 185 185	5 1 0	
Calculation (Ime	8.094	S			


Note the change in input impedance from as an effect of the copper ground plane.

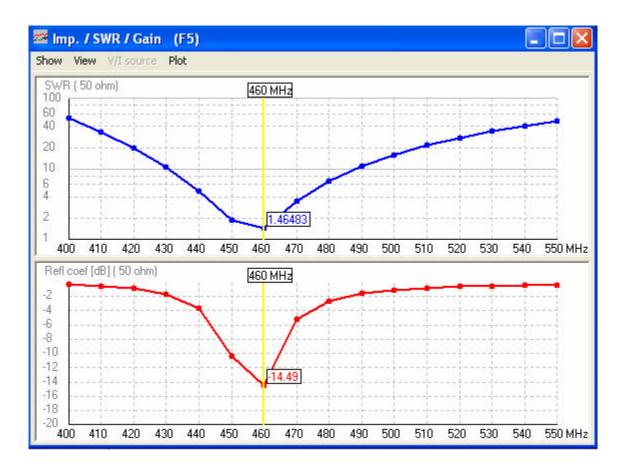
SWR and reflection coefficient with copper gnd plane



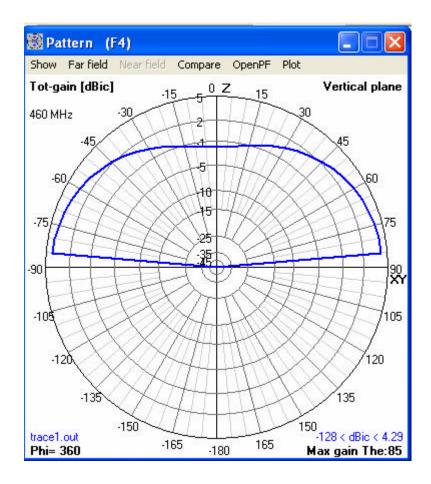
Resonant frequency shifts to 730 Mhz from 460 Mhz. as an effect of the copper ground plane. The SWR and the reflection coefficient also changes upwards.

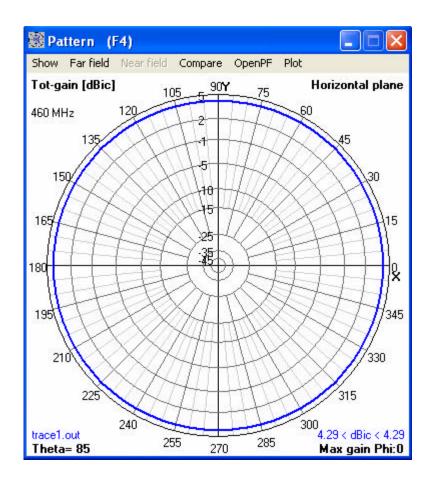
Far field patterns for antenna over copper ground plane Vertical plane

Far field pattern for antenna over a copper gnd plane Horizontal pattern



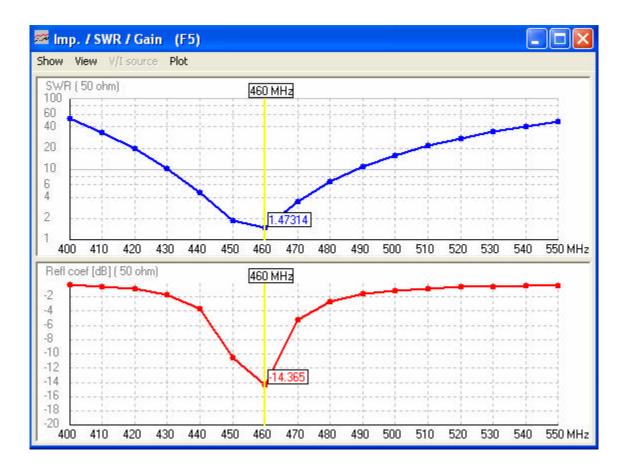
Adjustments made to get the resonant frequency and impedance close to where I want it.

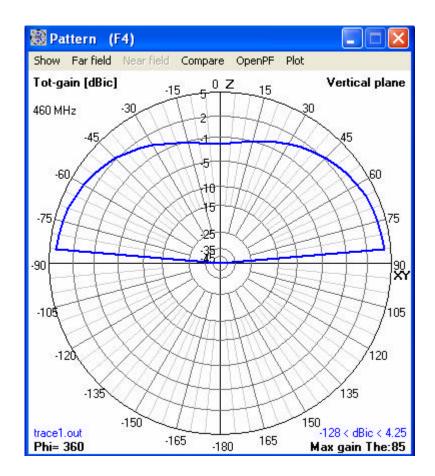

Height of the stub = 0.06, the length of the cross arm is 0.105. Cross arm radius 0.1mm Stub radius = 0.1 mm.

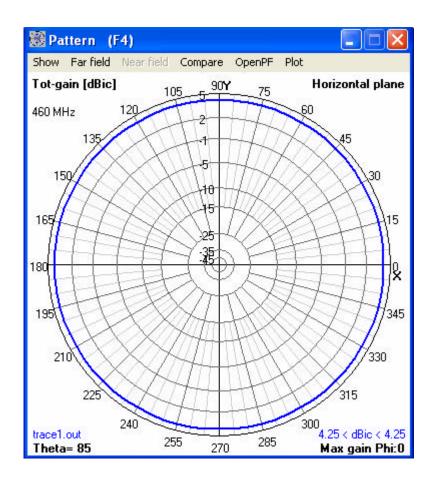

👔 Main [V5.	8.1] (F2)				
File Edit Set	tings Calculate Window Show	Run	Help		
💳 🕼 🏌 🕻	B 3D 🛃 🛞 🖄 🥮 📓	f :	(🛄 😲		
Filename	trace1.out		Frequency	460	Mhz
			Wavelength	0.652	mtr
Voltage 🛛	7.03 + j 0 V		Current	0.14 + j 0.02 A	<u>}</u>
Impedance	48 - j 8.19		Series comp.	3.e-3	uH
Parallel form	49.4 // - j 289		Parallel comp.	0.1	uH
S.W.R. 50	1.19		Input power	1	W
Efficiency	100	%	Structure loss	0	W
Radiat-eff.		%	Network loss	0	W
Environment			Radiat-power	1	W
WHERE WIRE FINITE GROUP Comment	NE SPECIFIED. ENDS TOUCH GROUND, CURRE ND. SOMMERFELD SOLUTION	NT WIL	L BE INTERPOLATE	D TO IMAGE IN GROUND F	PLANE.
*.Out loading-tir	ne=0.063				
Seg's/patches	35		start stop	count step	
Pattern lines	592		Theta .90 90	37 5	
Freq/Eval steps			Phi 185 185	1 0	
Calculation time	4.734	s			

SWR and reflection coefficient

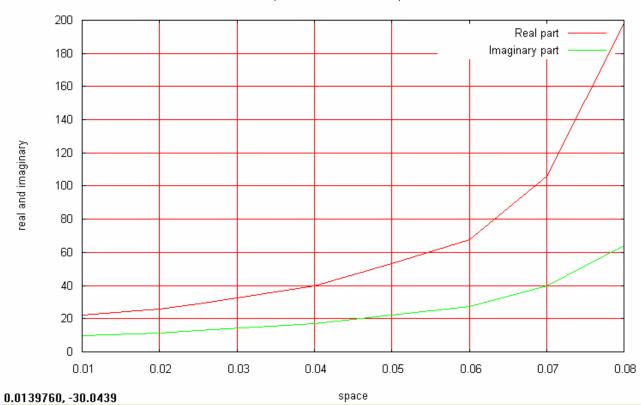
Far field

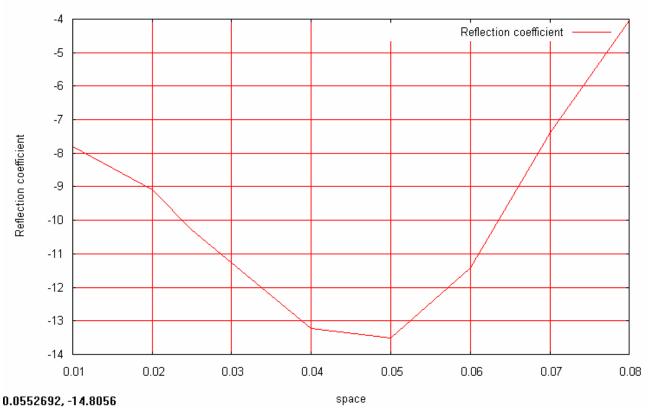



The above results were obtained with ideal conductors. The following results are with actual copper conductors.

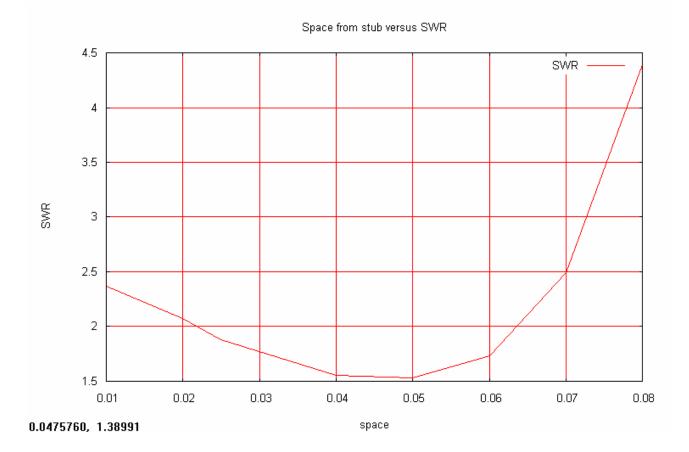

😑 🕼 🦹 🕲 3D	10 8 8 8 8	1:1	L		
Filename [trace1.	out		Frequency	460	Mhz
			Wavelength	0.652	mtr
Voltage	7.61 + j 0 V	1	Current	0.13 - j 0.05 A	ł.
mpedance	50.3 + j 19.5		Series comp.	17.7	pF
Parallel form	57.9 // j 149		Parallel comp.	2.324	pF
S.W.R. 50	1.47		Input power	1	W
Efficiency	99.16	%	Structure loss	8.e-3	W
Radiat-eff.	93.34	%	Network loss	0	W
RDF [dB]	4.55		Radiat-power	0.992	W
Environment					
	S TOUCH GROUND, CU DMMERFELD SOLUTIO		L BE INTERPOLATED 1	TO IMAGE IN GROUND	PLANE.
	35	_	start stop	count step	
Seg's/patches Pattern lines Freq/Eval steps	2701	=	Theta _90 _90 Phi 360	37 5 73 5	

SWR and Reflection Coefficient


Far Field


To conclude this exercise it must be mentioned that the copper ground plane makes a significant difference to the SWR, reflection coefficient and so on. However, changes in the composition of the conductors seem to make less of a difference.

The next set of results show the change of feed point impedance with the spacing of the feed point from the stub end of the antenna. In addition the dependence of the SWR and reflection coefficient is also analyzed.


Space from stub versus impedance

Reflection coefficient versus space from stub

Space from stub versus Reflection Coefficient

Signal Processing Group Inc, Chandler, Arizona 85225.Website http://www.signalpro.biz. Date: May 6, 2010.

SWR with respect to space from stub end for feed point

The next table shows the effect of varying the height of the cross arm above ground.

	h (m)	Zin	f _R	SWR	?
	0.057	44.6 – j18.2	460	1.49	-14.0
down	0.056	42.0 - j30.8	470	1.97	-16.4
Going	0.055	39.6 – j42.9	470	1.13	-24.0
↓	0.054	37.1 – j55.8	470	1.0403	-15.0
	0.059	50.2 + j8.18	460	1.17	-21.8
dn g	0.060	53.3 + j22.1	460	1.53	-13.5
Going	0.061	56.6 + j36.4	450	1.31	-17.4
↓	0.062	60.1 + j51.4	450	1.06	-30.4

<u>The starting values are: h= 0.058 meter, f_R =460 Mhz, Zin = 47.3 – j5.24, ? = -24.2, SWR = 1.12 Reference impedance = 50.0 Ohms.</u>

Note:

1.0 Change of reactance from capacitive to inductive as height changes

2.0 Resonant frequency change. Percentage = Approximately $\pm 2.2\%$

3.0 Impedance change: Real = -20% to +27%, Imaginary = 1900% (approximately)

With <u>very small changes</u> in height above ground (for the cross arm) the impedance at a particular point changes significantly. The resonant frequency change is fairly small. i.e. antenna is very sensitive to changes in height above ground to impedance.

The next set of results shows the effect of varying <u>the radius</u> of the wires. The first table is the effect of varying the radius of the stub. <u>Starting values</u> radius = 0.1mm Zin = 47.3 – j5.24, $f_R = 460$ Mhz, SWR = 1.12, ?= -24.4.

Radius	Zin	f _R	SWR	?	
(mm)					
0.09	47.5 – j0.54	460	1.05	-31.57	
0.08	47.4 – j4.79	460	1.11	-25.3	
0.07	48.1 + j11.0	460	1.25	-18.9	
0.06	48.6 + j18.2	460	1.44	-14.7	
0.05	49.3 + j27	455	1.09	-27.2	
0.11	47.2 – j9.4	460	1.22	-19.9	
0.12	47.1 – j13.2	460	1.32	-17.2	
0.13	47.1 – j16.6	465	1.13	-23.7	
0.14	47.0 - j19.8	465	1.06	-29.8	
0.15	47.0 – j22.7	465	1.00	-51.2	

Note:

- 1.0 The switch-over of the reactance type from capacitive to inductive.
- 2.0 Frequency changes very little
- 3.0 Very high return loss at about h = 0.15

The following table shows the effects of varying the radius of the cross arm. The starting point was:

Radius = 0.1mm, Zin=47.3-j5.24, f_R = 460 Mhz, SWR = 1.04, ? = -32.9

Radius	Zin	f _R	SWR	?
0.09	47.6 – j9.86	460	1.23	-19.7
0.08	47.9 – j15.1	465	1.19	-20.9
0.07	48.3 – j21.2	465	1.06	-29.5
0.06	48.8 - j28.4	465	1.08	-28.11
0.05	49.3 – j37.1	468	1.10	-26.13
0.11	47.1 – j1.14	460	1.06	-29.7
0.12	46.8 + j2.53	460	1.08	-27.5
0.13	46.6 + j5.83	458	1.12	-24.7
0.14	46.4 + j8.83	458	1.10	-26.1
0.15	46.2 + j11.6	458	1.12	-24.7

Notes:

Most parameters seem to be fairly insensitive to change of radius of the cross arm. However, from the results above it may be a good way to fine tune the parameters.

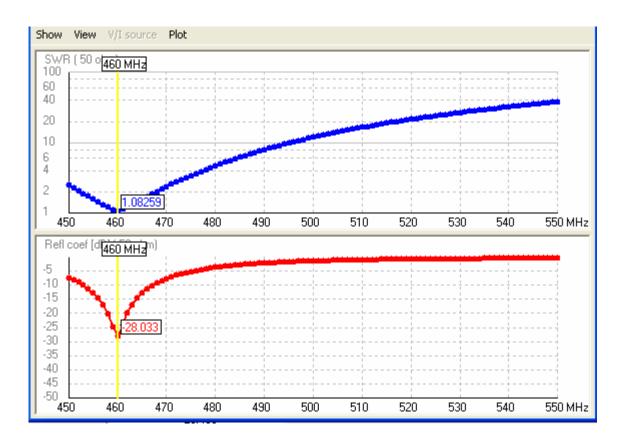
The next set of simulations results present the change in parameters with a change in the length of the cross arm. The starting values are:

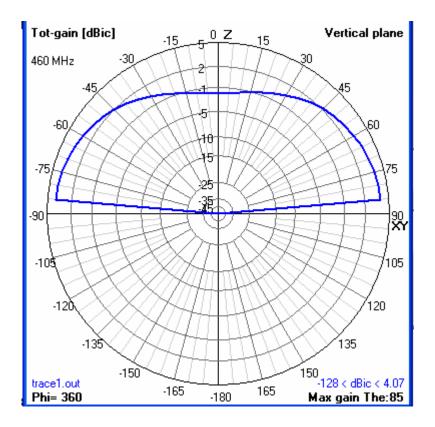
<u>Legth = 0.105 (m), Zin = 47.3 – j5.24, f_R , SWR = 1.04, ?=-32.9</u>

L	Zin	f _R	SWR	?
0.095	39.6 - j138	491	1.11	-25.4
0.085	33.5 - j274	525	1.31	-17.38
0.075	28.6 - j419	564	1.57	-12.9
0.065	24.6 - j583	609	1.95	-9.8
0.115	57.3 + j129	434	1.2	-20.5
0.125	70.6 + j271	411	1.35	-16.5
0.135	88.7 + j427	390	1.51	-13.8
0.145	114 + j606	370	1.69	-11.8
0.155	152 + j820	353	1.85	-10.5

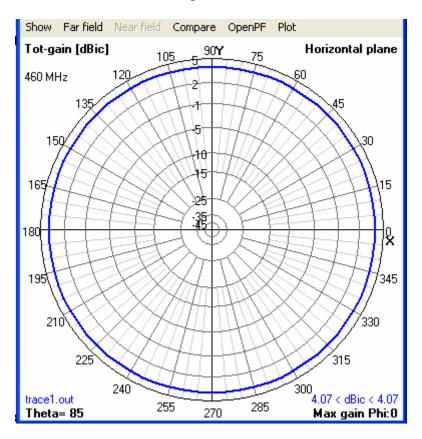
Notes:

- 1.0 Resonant frequency is a sensitive function of cross arm length
- 2.0 Impedance is likewise
- 3.0 SWR seems to be much more muted in response.


In practical terms this means that one has to be prepared to trim the cross arm length for gross frequency trims.


This concludes the NEC2 simulation results presentation. A follow – up paper presents the EM simulation results using ADS.

Appendix: The following results are presented for an optimized 460 Mhz antenna that I designed to increase the trace widths to 24 mil.


Filename trace1	out		Frequency	460	Mhz
I date	Juli		Wavelength	0.652	mtr
Voltage	6.8+j0V		Current 🛛	0.15 - j 3e-3 A	
Impedance	46.3 + j 0.82		Series comp.	422.3	pF
Parallel form	46.3 // j 2614		Parallel comp.	0.132	pł
S.W.R. 50	1.08		Input power	1	
Efficiency	95.67	~ %	Structure loss	0.043	
Radiat-eff.		- %	Network loss	0	
			Radiat-power	0.957	W
Environment					
GROUND PLANE SP	ECIFIED.	DENTMA			
WHERE WIRE END:	S TOUCH GROUND, CUP		L BE INTERPOLATED	TO IMAGE IN GROUND	PLANE.
WHERE WIRE END: FINITE GROUND. S	PECIFIED. S TOUCH GROUND, CUF OMMERFELD SOLUTION		L BE INTERPOLATED	TO IMAGE IN GROUND	PLANE.
WHERE WIRE END: FINITE GROUND. S	S TOUCH GROUND, CUP OMMERFELD SOLUTION		L BE INTERPOLATED	TO IMAGE IN GROUND	PLANE.
WHERE WIRE END: FINITE GROUND. S Comment	S TOUCH GROUND, CUP OMMERFELD SOLUTION		L BE INTERPOLATED	TO IMAGE IN GROUND	PLANE.
WHERE WIRE END: FINITE GROUND. S Comment *.Out loading-time=0.2	S TOUCH GROUND, CUF OMMERFELD SOLUTION 25				PLANE.
WHERE WIRE END: FINITE GROUND. S Comment *.Out loading-time=0.2 Seg's/patches	S TOUCH GROUND, CUP OMMERFELD SOLUTION 25 35		start stop	count_step_	PLANE.
WHERE WIRE END: FINITE GROUND. S Comment	S TOUCH GROUND, CUF OMMERFELD SOLUTION 25		start stop		PLANE.

Reflection coefficient and SWR

Far field patterns

Far field pattern (contd)